1. A curve has the equation $\boldsymbol{x y}+\boldsymbol{y}^{\mathbf{2}}=\mathbf{2}$
(a) Use implicit differentiation to obtain $\frac{d \boldsymbol{y}}{\boldsymbol{d} \boldsymbol{x}}$ in terms of $\boldsymbol{x} \& \boldsymbol{y}$
(b) Hence find an equation to the tangent of the curve at point $(1,1)$. 2
2. A curve is defined by the parametric equations $\boldsymbol{x}=\boldsymbol{t}^{2}+\boldsymbol{t}-\mathbf{1}, \boldsymbol{y}=2 \boldsymbol{t}^{2}-\boldsymbol{t}+\mathbf{2}$ for all \boldsymbol{t}. Show that $\boldsymbol{A}(-1,5)$ lies on the curve and obtain an equation of the tangent to the curve at point \boldsymbol{A}.
3. The equation $\boldsymbol{y}^{\mathbf{3}}+\mathbf{3 x y}=\mathbf{3} \boldsymbol{x}^{2}-\mathbf{5}$ defines a curve passing through the point $\mathrm{A}(2,1)$. Obtain an equation for the tangent to the curve at A
4. A curve is defined by the equations $\boldsymbol{x}=5 \cos \boldsymbol{\theta}$ and $\boldsymbol{y}=5 \sin \boldsymbol{\theta}(0 \leq \boldsymbol{\theta} \leq \mathbf{2 \pi})$

Use parametric differentiation to find $\frac{d y}{d x}$ in terms $\boldsymbol{\theta}$.
Find an equation to the tangent of the curve where $\boldsymbol{\theta}=\frac{\pi}{4}$
5. Given the equation $2 \boldsymbol{y}^{2}-2 \boldsymbol{x y}-4 y+\boldsymbol{x}^{2}=0$ of a curve, obtain the \boldsymbol{x}-coordinate of each point at which the curve has a horizontal tangent.
6. Given $\boldsymbol{x y}-\boldsymbol{x}=4$, use implicit differentiation to obtain $\frac{d y}{d x}$ in terms of $x \& y$

Hence obtain $\frac{\boldsymbol{d}^{2} \boldsymbol{y}}{\boldsymbol{d x ^ { 2 }}} \quad$ in terms of $x \& y$
7. A curve is defined by the parametric equations $x=\cos 2 t, y=\sin 2 t, 0<t<\frac{\pi}{2}$
(a) Use parametric differentiation to find $\frac{d y}{d x}$,

Hence find the equation of the tangent when $\boldsymbol{t}=\frac{\boldsymbol{\pi}}{\mathbf{8}}$
(b) Obtain an expression for $\frac{d^{2} y}{d x^{2}}$ and hence show that $\sin 2 t \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}=\boldsymbol{k}, \quad$ where k is an integer. State the value of k.
8. Given $\boldsymbol{x}=2 \sec \boldsymbol{\theta}, \boldsymbol{y}=\mathbf{3} \sin \theta$, use parametric differentiation to find $\frac{d y}{d x}$ in terms of $\boldsymbol{\theta}$.
9. A curve is defined by the equation $\boldsymbol{x} \boldsymbol{y}^{2}+\mathbf{3} \boldsymbol{x}^{2} \boldsymbol{y}=\mathbf{4}$ for $\boldsymbol{x}>\mathbf{0}$ and $\boldsymbol{y}>\mathbf{0}$.

Use implicit differentiation to find $\frac{d y}{d x}$.
Hence find the equation of the tangent to the curve where $\boldsymbol{x}=\boldsymbol{1}$.
10. Calculate the gradient of the curve defined by $\frac{\boldsymbol{x}^{2}}{\boldsymbol{y}}+\boldsymbol{x}=\boldsymbol{y}-\mathbf{5}$ at the point $(3,-1)$
11. Given $\boldsymbol{y}=\boldsymbol{t}^{\mathbf{3}}-\frac{\mathbf{5}}{\mathbf{2}} \boldsymbol{t}^{2} \& x=\sqrt{\boldsymbol{t}}$ for $\boldsymbol{t}>\boldsymbol{0}$, use parametric differentiation to express $\frac{d y}{d x}$ in terms of \boldsymbol{t} in simplified form.

Show that $\frac{\boldsymbol{d}^{2} \boldsymbol{y}}{\boldsymbol{d} \boldsymbol{x}^{2}}=\boldsymbol{a} \boldsymbol{t}^{2}+\boldsymbol{b} \boldsymbol{t}$, determining the values of the constants a and b.
Obtain an equation for the tangent to the curve which passes through the point of inflexion.

