1. Given $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{x}(\mathbf{1}+\boldsymbol{x})^{\mathbf{1 0}}$, obtain $f^{\prime}(x)$ and simplify your answer.
2. (a) $\boldsymbol{f}(\boldsymbol{x})=(\mathbf{2}+\boldsymbol{x}) \boldsymbol{\operatorname { t a n }}^{\mathbf{- 1}}(\sqrt{\boldsymbol{x}-\mathbf{1}}), \boldsymbol{x}>1$ obtain $f^{\prime}(x)$.
(b) $\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{e}^{\cot 2 \boldsymbol{x}}, \mathbf{0}<x<\frac{\pi}{2}$, obtain $g^{\prime}(x)$ and simplify.
3. (a) Given $\boldsymbol{f}(\boldsymbol{x})=\sqrt{\boldsymbol{x}} \boldsymbol{e}^{-\boldsymbol{x}}, \boldsymbol{x} \geq \mathbf{0}$, obtain and simplify $f^{\prime}(x)$
(b) Given $y=(x+1)^{2}(x+2)^{-4}$ and $x>0$, use logarithmic differentiation to show that $\frac{d y}{d x}$ can be expressed in the form $\left(\frac{\boldsymbol{a}}{\boldsymbol{x}+\boldsymbol{1}}+\frac{\boldsymbol{b}}{\boldsymbol{x + 2}}\right) \boldsymbol{y}$, stating the values of the constants \boldsymbol{a} and \boldsymbol{b}.
4. Given $y=3^{x}$ use logarithmic differentiation to obtain $\frac{d y}{d x}$ in terms of x
5. (a) Given $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{\operatorname { c o s }}^{2} \boldsymbol{x} \boldsymbol{e}^{\boldsymbol{\operatorname { t a n }} \boldsymbol{x}},-\frac{\pi}{2}<x<\frac{\boldsymbol{\pi}}{2}$, obtain $f^{\prime}(x)$ and evaluate $\boldsymbol{f}^{\prime}\left(\frac{\pi}{4}\right)$
(b) Differentiate $\boldsymbol{g}(\boldsymbol{x})=\frac{\boldsymbol{\operatorname { t a n }}^{-1}(2 x)}{1+4 \boldsymbol{x}^{2}}$
6. (a) Given $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{x}^{\mathbf{3}} \boldsymbol{\operatorname { t a n }} \mathbf{2 x}, \quad \mathbf{0}<x<\frac{\boldsymbol{\pi}}{\mathbf{4}}$ obtain $f^{\prime}(x)$.
(b) For $y=\frac{1+x^{2}}{1+x}$, where $x \neq-1$, determine $\frac{d y}{d x}$ \& simplify
7. Differentiate $\frac{1+\ln x}{3 x}$, where $x>0$
8. $f(x)=2 \tan ^{-1} \sqrt{1+x}$, where $x>-1$ Find $f^{\prime}(x) \&$ simplify
9. Obtain the derivative of each of the following functions:
(a) $f(x)=e^{(\sin 2 x)}$;
3
(b) $y=4^{\left(x^{2}+1\right)}$
10. Differentiate $f(x)=\boldsymbol{\operatorname { c o s }}^{-1}(3 x)$, where $-\frac{1}{3}<x<\frac{1}{3}$
11. The curve $\boldsymbol{y}=\boldsymbol{x}^{2 x^{2}+1}$ is defined for $\boldsymbol{x}>\mathbf{0}$. Obtain the values of \boldsymbol{y} and $\frac{\boldsymbol{d y}}{\boldsymbol{d} \boldsymbol{x}}$ at the point where $\boldsymbol{x}=\mathbf{1}$.
12. Write down the derivative of $\tan x$.

Show that $1+\tan ^{2} \boldsymbol{x}=\sec ^{2} \boldsymbol{x}$. Hence obtain $\int \tan ^{2} \boldsymbol{x} \boldsymbol{d x}$ 1,2
13. A body moves along a straight line with velocity $\boldsymbol{v}=\boldsymbol{t}^{\mathbf{3}}-\mathbf{1 2} \boldsymbol{t}^{2}+\mathbf{3 2} \boldsymbol{t}$ at time t.
(a) Obtain the value of its acceleration when $\boldsymbol{t}=\mathbf{0}$.
(b) At time $\boldsymbol{t}=\mathbf{0}$, the body is at the origin \boldsymbol{O}. Obtain a formula for the displacement of the body at time t.

Show that the body returns to \boldsymbol{O}, and obtain the time, \boldsymbol{T}, when this happens.
14. Given $f(x)=(x+1)(x-2)^{3}$, obtain the values of x for which $f^{\prime}(x)=0$.
15. (a) Given $f(x)=e^{x} \operatorname{Sin} x^{2}$, obtain $f^{\prime}(x)$
(b) Given $g(x)=\frac{x^{3}}{(1+\tan x)} \quad$, obtain $g^{\prime}(x)$

